Finish lab
This commit is contained in:
parent
88c32093a3
commit
6da3e784cd
9 changed files with 101 additions and 78 deletions
|
@ -7,7 +7,7 @@ openssl prime -generate -bits 8
|
|||
\end{verbatim}
|
||||
|
||||
\begin{verbatim}
|
||||
prime1 = 211, prime2 = 223, prime3 = 227, e=11
|
||||
prime1 = 211, prime2 = 223, e=11
|
||||
\end{verbatim}
|
||||
|
||||
\subsection{Berechnungen}
|
||||
|
@ -18,29 +18,36 @@ prime1 = 211, prime2 = 223, prime3 = 227, e=11
|
|||
\end{align}
|
||||
|
||||
\begin{verbatim}
|
||||
g = 9, x = 2, y = 3
|
||||
g = 9, x = 2, y = 3, n = 227 (prime3)
|
||||
\end{verbatim}
|
||||
|
||||
\begin{align}
|
||||
a = g^{x}\ (mod\ prime3) = 9^{2} (mod\ 227) = 81 \\
|
||||
b = g^{y}\ (mod\ prime3) = 9^{3} (mod\ 227) = 48 \\
|
||||
k_{1} = b^{x}\ (mod\ prime3) = 48^{2}\ (mod\ 227) = 34 \\
|
||||
k_{2} = a^{y}\ (mod\ prime3) = 81^{3}\ (mod\ 227) = 34 \\
|
||||
k = k_{1} = k_{2} = 34
|
||||
a = g^{x}\ (mod\ n) = 9^{2} (mod\ 227) = 81\ (public\ a) \\
|
||||
b = g^{y}\ (mod\ n) = 9^{3} (mod\ 227) = 48\ (public\ b) \\
|
||||
k_{1} = b^{x}\ (mod\ n) = 48^{2}\ (mod\ 227) = 34\ (private) \\
|
||||
k_{2} = a^{y}\ (mod\ n) = 81^{3}\ (mod\ 227) = 34\ (private) \\
|
||||
k = k_{1} = k_{2} = 34\ (private)
|
||||
\end{align}
|
||||
|
||||
\subsection{Fragen und Antworten}
|
||||
|
||||
1. What attack is the Diffie-Hellman key exchange vulnerable to?
|
||||
|
||||
Man in the Middle
|
||||
- Man in the Middle
|
||||
|
||||
2. What measures can be taken to prevent this type of attack?
|
||||
|
||||
Encryption, Authentication over QR code or 2Factor-Authentication
|
||||
- Encryption, Authentication over QR code or 2Factor-Authentication
|
||||
|
||||
3. For the Diffie-Hellman, a generator g is used. Explain what a generator is and how can it be found
|
||||
|
||||
- A generator is a number that will be the base of the calculation and is shared between the 2 parties. G is a small prime number.
|
||||
|
||||
\begin{align}
|
||||
g^{a}\ (mod\ n) \neq g^{b}\ (mod\ n) \\
|
||||
g^{(a\ *\ b)}\ (mod\ n) = g^{(b\ *\ a)}\ (mod\ n)
|
||||
\end{align}
|
||||
|
||||
4. Show why for the primes 61,23 and the public key e=60 no private key d can be found
|
||||
|
||||
\begin{align}
|
||||
|
|
Reference in a new issue