Update part5.tex
This commit is contained in:
parent
c3d87138e8
commit
88c32093a3
1 changed files with 13 additions and 9 deletions
|
@ -13,8 +13,8 @@ prime1 = 211, prime2 = 223, prime3 = 227, e=11
|
||||||
\subsection{Berechnungen}
|
\subsection{Berechnungen}
|
||||||
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
d = e^{-1} mod ((prime1-1)(prime2-1)) \\
|
d = e^{-1}\ mod\ ((prime1-1)(prime2-1)) \\
|
||||||
d = 11^{-1} mod ((211-1)(223-1)) = 21191
|
d = 11^{-1}\ mod\ ((211-1)(223-1)) = 21191
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\begin{verbatim}
|
\begin{verbatim}
|
||||||
|
@ -22,24 +22,28 @@ g = 9, x = 2, y = 3
|
||||||
\end{verbatim}
|
\end{verbatim}
|
||||||
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
a = g^{x} (mod\ prime3) = 9^{2} (mod\ 227) = 81 \\
|
a = g^{x}\ (mod\ prime3) = 9^{2} (mod\ 227) = 81 \\
|
||||||
b = g^{y} (mod\ prime3) = 9^{3} (mod\ 227) = 48 \\
|
b = g^{y}\ (mod\ prime3) = 9^{3} (mod\ 227) = 48 \\
|
||||||
k_{1} = b^{x}(mod\ prime3) = 48^{2}(mod\ 227) = 34 \\
|
k_{1} = b^{x}\ (mod\ prime3) = 48^{2}\ (mod\ 227) = 34 \\
|
||||||
k_{2} = a^{y}(mod\ prime3) = 81^{3}(mod\ 227) = 34 \\
|
k_{2} = a^{y}\ (mod\ prime3) = 81^{3}\ (mod\ 227) = 34 \\
|
||||||
k = k_{1} = k_{2} = 34
|
k = k_{1} = k_{2} = 34
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\subsection{Fragen}
|
\subsection{Fragen und Antworten}
|
||||||
|
|
||||||
1. What attack is the Diffie-Hellman key exchange vulnerable to?
|
1. What attack is the Diffie-Hellman key exchange vulnerable to?
|
||||||
|
|
||||||
Man in the Middle attacks
|
Man in the Middle
|
||||||
|
|
||||||
2. What measures can be taken to prevent this type of attack?
|
2. What measures can be taken to prevent this type of attack?
|
||||||
|
|
||||||
RSA Encryption
|
Encryption, Authentication over QR code or 2Factor-Authentication
|
||||||
|
|
||||||
3. For the Diffie-Hellman, a generator g is used. Explain what a generator is and how can it be found
|
3. For the Diffie-Hellman, a generator g is used. Explain what a generator is and how can it be found
|
||||||
|
|
||||||
4. Show why for the primes 61,23 and the public key e=60 no private key d can be found
|
4. Show why for the primes 61,23 and the public key e=60 no private key d can be found
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
d = e^{-1}\ mod\ ((p1-1)(p2-1)) \\
|
||||||
|
d = 60^{-1}\ mod\ ((61-1)(23-1)) = 60^{-1} mod\ 1320
|
||||||
|
\end{align}
|
Reference in a new issue