\section{Part 5: Asymmetric Encryption} \subsection{Generierte Primzahlen} \begin{verbatim} openssl prime -generate -bits 8 \end{verbatim} \begin{verbatim} prime1 = 211, prime2 = 223, prime3 = 227, e=11 \end{verbatim} \subsection{Berechnungen} \begin{align} d = e^{-1} mod ((prime1-1)(prime2-1)) \\ d = 11^{-1} mod ((211-1)(223-1)) = 21191 \end{align} \begin{verbatim} g = 9, x = 2, y = 3 \end{verbatim} \begin{align} a = g^{x} (mod\ prime3) = 9^{2} (mod\ 227) = 81 \\ b = g^{y} (mod\ prime3) = 9^{3} (mod\ 227) = 48 \\ k_{1} = b^{x}(mod\ prime3) = 48^{2}(mod\ 227) = 34 \\ k_{2} = a^{y}(mod\ prime3) = 81^{3}(mod\ 227) = 34 \\ k = k_{1} = k_{2} = 34 \end{align} \subsection{Fragen} 1. What attack is the Diffie-Hellman key exchange vulnerable to? Man in the Middle attacks 2. What measures can be taken to prevent this type of attack? RSA Encryption 3. For the Diffie-Hellman, a generator g is used. Explain what a generator is and how can it be found 4. Show why for the primes 61,23 and the public key e=60 no private key d can be found