\section{Part 5: Asymmetric Encryption} \subsection{Generierte Primzahlen} \begin{verbatim} openssl prime -generate -bits 8 \end{verbatim} \begin{verbatim} prime1 = 211, prime2 = 223, e=11 \end{verbatim} \subsection{Berechnungen} \begin{align} d = e^{-1}\ mod\ ((prime1-1)(prime2-1)) \\ d = 11^{-1}\ mod\ ((211-1)(223-1)) = 21191 \end{align} \begin{verbatim} g = 9, x = 2, y = 3, n = 227 (prime3) \end{verbatim} \begin{align} a = g^{x}\ (mod\ n) = 9^{2} (mod\ 227) = 81\ (public\ a) \\ b = g^{y}\ (mod\ n) = 9^{3} (mod\ 227) = 48\ (public\ b) \\ k_{1} = b^{x}\ (mod\ n) = 48^{2}\ (mod\ 227) = 34\ (private) \\ k_{2} = a^{y}\ (mod\ n) = 81^{3}\ (mod\ 227) = 34\ (private) \\ k = k_{1} = k_{2} = 34\ (private) \end{align} \newpage \subsection{Fragen und Antworten} 1. What attack is the Diffie-Hellman key exchange vulnerable to? \begin{list}{-}{} \item Man in the Middle \end{list} 2. What measures can be taken to prevent this type of attack? \begin{list}{-}{} \item Encrypting exchange (VPN) \item Signature verification \item Combine with RSA/AES \item Authentication at Server-Level over QR code or 2Factor-Authentication \end{list} 3. For the Diffie-Hellman, a generator g is used. Explain what a generator is and how can it be found \begin{list}{-}{} \item A generator is a number that will be the base of the calculation and is shared between the 2 parties \item G is a small prime number. \end{list} \begin{align} g^{a}\ (mod\ n) \neq g^{b}\ (mod\ n) \\ g^{(a\ *\ b)}\ (mod\ n) = g^{(b\ *\ a)}\ (mod\ n) \end{align} 4. Show why for the primes 61,23 and the public key e=60 no private key d can be found \begin{align} d = e^{-1}\ mod\ ((p1-1)(p2-1)) \\ d = 60^{-1}\ mod\ ((61-1)(23-1)) = 60^{-1} mod\ 1320 \end{align}