This repository has been archived on 2024-10-30. You can view files and clone it, but cannot push or open issues or pull requests.
swb6-it-sec/Lab04/documentation/part5/part5.tex
2022-06-10 11:53:48 +02:00

68 lines
No EOL
1.8 KiB
TeX

\section{Part 5: Asymmetric Encryption}
\subsection{Generierte Primzahlen}
\begin{verbatim}
openssl prime -generate -bits 8
\end{verbatim}
\begin{verbatim}
prime1 = 211, prime2 = 223, e=11
\end{verbatim}
\subsection{Berechnungen}
\begin{align}
d = e^{-1}\ mod\ ((prime1-1)(prime2-1)) \\
d = 11^{-1}\ mod\ ((211-1)(223-1)) = 21191
\end{align}
\begin{verbatim}
g = 9, x = 2, y = 3, n = 227 (prime3)
\end{verbatim}
\begin{align}
a = g^{x}\ (mod\ n) = 9^{2} (mod\ 227) = 81\ (public\ a) \\
b = g^{y}\ (mod\ n) = 9^{3} (mod\ 227) = 48\ (public\ b) \\
k_{1} = b^{x}\ (mod\ n) = 48^{2}\ (mod\ 227) = 34\ (private) \\
k_{2} = a^{y}\ (mod\ n) = 81^{3}\ (mod\ 227) = 34\ (private) \\
k = k_{1} = k_{2} = 34\ (private)
\end{align}
\newpage
\subsection{Fragen und Antworten}
1. What attack is the Diffie-Hellman key exchange vulnerable to?
\begin{list}{-}{}
\item Man in the Middle
\end{list}
2. What measures can be taken to prevent this type of attack?
\begin{list}{-}{}
\item Encrypting exchange (VPN)
\item Signature verification
\item Combine with RSA/AES
\item Authentication at Server-Level over QR code or 2Factor-Authentication
\end{list}
3. For the Diffie-Hellman, a generator g is used. Explain what a generator is and how can it be found
\begin{list}{-}{}
\item A generator is a number that will be the base of the calculation and is shared between the 2 parties
\item G is a small prime number.
\end{list}
\begin{align}
g^{a}\ (mod\ n) \neq g^{b}\ (mod\ n) \\
g^{(a\ *\ b)}\ (mod\ n) = g^{(b\ *\ a)}\ (mod\ n)
\end{align}
4. Show why for the primes 61,23 and the public key e=60 no private key d can be found
\begin{align}
d = e^{-1}\ mod\ ((p1-1)(p2-1)) \\
d = 60^{-1}\ mod\ ((61-1)(23-1)) = 60^{-1} mod\ 1320
\end{align}